Coronary Magnetic Resonance Angiography

This is likewise one of the factors by obtaining the soft documents of this Coronary Magnetic Resonance Angiography by online. You might not require more get older to spend to go to the ebook creation as without difficulty as search for them. In some cases, you likewise pull off not discover the statement Coronary Magnetic Resonance Angiography that you are looking for. It will enormously squander the time.

However below, as soon as you visit this web page, it will be fittingly utterly easy to get as with ease as download guide Coronary Magnetic Resonance Angiography. It will not bow to many times as we run by before. You can get it even if be active something else at home and even in your workplace. thus easy! So, are you question? Just exercise just what we meet the expense of under as capably as evaluation Coronary Magnetic Resonance Angiography what you behind to read!

CT and MR Angiography Geoffrey D. Rubin 2012-10-09 Written by world-renowned experts in both CT angiography and MR angiography, this landmark work is the first comprehensive text on vascular imaging using CT and MR. It provides a balanced view of the capabilities of these modalities and practical guidelines for obtaining and interpreting images. More than 2,200 illustrations complement the text. Chapters co-authored by CT and MR authorities cover imaging of all coronary and non-coronary arteries and veins. Each chapter details indications, imaging strategies, normal and variant anatomy, diseases, surgical management, and pitfalls. The authors compare the utility of CT and MR in specific clinical situations and discuss the role of conventional angiography and ultrasound where appropriate.

Aortic Dissection and Related Syndromes Ragavendra Baliga 2007-04-03 This state-of-the-art publication is a result of the combined efforts of participants from the International Registry of Aortic Dissection (IRAD). It is the most comprehensive reference on aortic dissection. The book has been divided into sections. Each chapter provides a succinct overview of the current clinical literature and incorporates illustrations for further explanation.

Coronary Artery Magnetic Resonance Angiography Michael Ernst Huber 2003 MRI and CT of the Cardiovascular System Charles B. Higgins 2013-09-11 Written by internationally eminent experts in cardiovascular imaging, this volume provides state-of-the-art information on the use of MRI and CT in the assessment of cardiac and vascular diseases. This third edition, now in four-color, reflects recent significant advances in cardiovascular MRI technology and the continuing emergence of multi-detector CT as an important diagnostic modality, particularly for ischemic heart disease. Seven new chapters have been added including chapters on anatomy, cardiovascular MR in infants/children, assessing myocardial viability, risk assessment in ischemic heart disease and MR guidance.

Magnetic Resonance Angiography James C. Carr 2016-08-23 Magnetic Resonance Angiography: Principles and Applications is a comprehensive text covering magnetic resonance angiography (MRA) in current clinical use. The first part of the book focuses on techniques, with chapters on contrast-enhanced MRA, time of flight, phase contrast, time-resolved angiography, and coronary MRA, as well as several chapters devoted to new non-contrast MRA techniques. Additionally, chapters describe in detail specific topics such as high-field MRA, susceptibility-weighted imaging, acceleration strategies such as parallel imaging, vessel wall imaging, targeted contrast agents, and low dose contrast-enhanced MRA. The second part of the book covers clinical applications of MRA, with each chapter describing the MRA techniques and protocols for a particular
disease and vascular territory, as well as the pathology and imaging findings relevant to the disease state being discussed. Magnetic Resonance Angiography: Principles and Applications is designed to bring together into a single textbook all of the MRA techniques in clinical practice today and will be a valuable resource for practicing radiologists and other physicians involved in the diagnosis and treatment of vascular diseases, as well as biomedical physicists, MRI technologists, residents, and fellows. Editors James C. Carr, MD, is the Director of Cardiovascular Imaging and Associate Professor of Radiology and Medicine at Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA. Timothy J. Carroll, PhD, is the Director of MRI Research and Associate Professor in the Departments of Biomedical Engineering and Radiology at Northwestern University, Evanston, Illinois, USA. Magnetic Resonance Angiography: Principles and Applications is designed to bring together into a single textbook all of the MRA techniques in clinical practice today and will be a valuable resource for practicing radiologists and other physicians involved in the diagnosis and treatment of vascular diseases, as well as biomedical physicists, MRI technologists, residents, and fellows. Editors James C. Carr, MD, is Director of Cardiovascular Imaging and Associate Professor of Radiology and Medicine at Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA. Timothy J. Carroll, PhD, is Assistant Professor in the Department of Radiology at Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA. Editors James C. Carr, MD, is Director of Cardiovascular Imaging and Associate Professor of Radiology and Medicine at Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA. Timothy J. Carroll, PhD, is the Director of MRI Research and Associate Professor in the Departments of Biomedical Engineering and Radiology at Northwestern University, Evanston, Illinois, USA. Magnetic Resonance Angiography Wael Shabana 2012-03-21 As MRI has paved its role in diagnostic angiography. MRA has the potential to provide more physiological and pathophysiological data over the disease in addition to the anatomical information. This book is divided into three sections. The first section discusses the basics of MRI angiography. It starts with focus on the contrast agents that are mainly used in MR angiography with detailed discussion of advantage and limitations of different types of contrast. The second chapter is oriented more towards the technical consideration that contribute to good quality examination, both the non contrast and contrast based sequences from black to bright blood imaging, contrast enhanced MRA, review of clinical application of MRA in different body systems and MR venography. The second section reviews the clinical application of MRI mainly in the head and neck and brain ischemia imaging. The new high resolution intracranial plaque imaging of the branch athermanous disease, to the hemodynamic of intracranial atherosclerotic stroke and quantitative MRA imaging in neurovascular imaging, are the topics in this section. Also this section covers the future prospective and the new frontiers MRI angiography is exploring. In the third section, MRA of aortic disease in children with emphasis on cardiac MRA. Cardiac CT, PET and MR Vasken Dilsizian 2019-08-19 A complete guide to non-invasive imaging techniques in cardiology. Todays imaging technologies offer cardiologists more ways than ever to diagnose conditions of the heart without the need of endoscopies and other invasive procedures. Now in its third edition, Cardiac CT, PET and MRI continues to provide an in-depth explanation of these tools and their correct applications, while also exploring cardiac imagings most recent and groundbreaking developments. This wide-ranging guide places CT, PET and MRI in a practical context, illustrating clearly their respective functions as they apply to specific cardiological disorders and clinical situations. With the addition of seven new chapters, it also offers an expanded insight into PET - an increasingly popular and affordable diagnostic utility, hitherto underexplored in texts devoted to imaging. Cardiac CT, PET and MRI includes: Clinically focused examinations of CT, PET and MRI - the three most popular non-invasive imaging modalities Illustrative full-color photos and images Access to a companion website featuring additional content Cardiologists, radiologists, nuclear medicine physicians, physicists, and imaging technologists.
alike will find the third edition of Cardiac CT, PET and MRI an informative and accessible resource with a direct use in their day-to-day practice.

Cardiovascular Magnetic Resonance Warren J. Manning 2018-04-26 Provides state-of-the-art coverage of CMR technologies and guidelines, including basic principles, imaging techniques, ischemic heart disease, right ventricular and congenital heart disease, vascular and pericardium conditions, and functional cardiovascular disease. Includes new chapters on non-cardiac pathology, pacemaker safety, economics of CMR, and guidelines as well as new coverage of myocarditis and its diagnosis and assessment of prognosis by cardiovascular magnetic resonance, and the use of PET/CMR imaging of the heart, especially in sarcoidosis.

Features more than 1,100 high-quality images representing today’s CMR imaging. Covers T1, T2 and ECV mapping, as well as T2* imaging in iron overload, which has been shown to save lives in patients with thalassaemia major Discusses the cost-effectiveness of CMR.

Magnetic Resonance Angiography E. Kent Yucel 1995 Magnetic resonance angiography (MRA) is a new non-invasive imaging procedure to directly view the vasculature. This text presents a practical review of this technique, its indications and the role it plays for the general radiologist and specialist, neurologist, cardiologist and vascular surgeon, in the diagnosis of vascular disorders.

Magnetic Resonance Angiography G. Schneider 2006-05-28 The advent of contrast-enhanced MRA in the early to mid 1990s revolutionized the clinical approach to vascular imaging: an accurate non-invasive imaging modality, not requiring ionizing radiation or potentially nephrotoxic iodinated contrast media, was able to compete with the more hazardous and invasive catheter angiography. Today, MRA is a safe, easy-to-perform procedure routinely used in most imaging centers, and the continued development of faster, more powerful magnets and more effective contrast agents is increasingly helping to overcome many of the early limitations of the technique. Subdivided into three sections (technique, indications and practical applications) and written by internationally renowned experts in the field, this volume stands out in the current literature on MRA by providing: - detailed information on sequence parameters for different magnets and vascular territories for the optimization of the MRA technique; - a broad overview of the principal indications for which contrast-enhanced MR angiography is ideally suited; - the typical MR imaging findings associated with various pathologies; - the appropriateness of contrast-enhanced MRA as compared with other modalities, such as CTA and CEUS; - the potential pitfalls and limitations of the technique in clinical routine. The volume will prove invaluable to radiologists and clinicians wishing to expand, improve, or consolidate their routine approach to vascular MR imaging.

Coronary CT Angiography Marc Dewey 2008-10-14 Coronary CT angiography has attained increasing scientific attention at academic institutions and has become a highly accurate diagnostic modality. Extending this knowledge into a practice setting is the purpose of "Coronary CT Angiography". This book will assist you in integrating cardiac CT into your daily practice, while also giving an overview of the current technical status and applications. The specific features of scanners from all four main vendors are also presented providing an objective overview of noninvasive coronary angiography using CT.

Magnetic Resonance Angiography James C. Carr 2011-12-10 Magnetic Resonance Angiography: Principles and Applications is a comprehensive text covering magnetic resonance angiography (MRA) in current clinical use. The first part of the book focuses on techniques, with chapters on contrast-enhanced MRA, time of flight, phase contrast, time-resolved angiography, and coronary MRA, as well as several chapters devoted to new non-contrast MRA techniques. Additionally, chapters describe in detail specific topics such as high-field MRA, susceptibility-weighted imaging, acceleration strategies such as parallel imaging, vessel wall imaging, targeted contrast agents, and low dose contrast-enhanced MRA. The second part of the book covers clinical applications of MRA, with each chapter describing the MRA techniques and protocols for a particular disease and vascular territory, as well as the pathology and imaging findings relevant to the disease state being discussed.
Applications is designed to bring together into a single textbook all of the MRA techniques in clinical practice today and will be a valuable resource for practicing radiologists and other physicians involved in the diagnosis and treatment of vascular diseases, as well as biomedical physicists, MRI technologists, residents, and fellows. Editors James C. Carr, MD, is the Director of Cardiovascular Imaging and Associate Professor of Radiology and Medicine at Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA. Timothy J. Carroll, PhD, is the Director of MRI Research and Associate Professor in the Departments of Biomedical Engineering and Radiology at Northwestern University, Evanston, Illinois, USA.

Magnetic Resonance Angiography: Principles and Applications is designed to bring together into a single textbook all of the MRA techniques in clinical practice today and will be a valuable resource for practicing radiologists and other physicians involved in the diagnosis and treatment of vascular diseases, as well as biomedical physicists, MRI technologists, residents, and fellows. Editors James C. Carr, MD, is Director of Cardiovascular Imaging and Associate Professor of Radiology and Medicine at Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA. Timothy J. Carroll, PhD, is Assistant Professor in the Department of Radiology at Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA. Editors James C. Carr, MD, is Director of Cardiovascular Imaging and Associate Professor of Radiology and Medicine at Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA. Timothy J. Carroll, PhD, is the Director of MRI Research and Associate Professor in the Departments of Biomedical Engineering and Radiology at Northwestern University, Evanston, Illinois, USA.

Clinical Cardiac MRI Jan Bogaert 2012-02-27 This fully updated edition of the most comprehensive and best-illustrated volume on cardiac MRI emphasizes its use in everyday clinical practice and includes in its online edition dozens more real-life cases that significantly enhance the utility of the book.

Projection Coronary Magnetic Resonance Angiography with Intravenous and Intraarterial Administration of Contrast Agent [microform] Jordin D. Green 2004 Second, an improved imaging sequence was used for catheter-directed coronary MRA and shown in swine that it offered a significant improvement in SNR over the previous imaging sequence.

Coronary Magnetic Resonance Angiography Andre J. Duerinckx 2006-05-05 In recent years, there has been increasing interest in the clinical applications of coronary angiography techniques. Coronary MRA can be instrumental in the evaluation of congenital coronary artery anomalies, however, the complexity of advanced MR pulse sequences and strategies may be overwhelming to many. Coronary MR Angiography demystifies the art of coronary MRA by providing a text in plain language with clearly illustrated imaging steps and protocols. Designed to bridge the gap between radiology and cardiology, it is written for physicians and scientists planning to incorporate this technique into their research or practice.

Cardiovascular and Coronary Artery Imaging Ayman S. El-Baz 2021-11-24 Cardiovascular and Coronary Artery Imaging, Volume One covers state-of-the-art approaches for automated non-invasive systems in early cardiovascular disease diagnosis. The book includes several prominent imaging modalities, such as MRI, CT and PET technologies. A special emphasis is placed on automated imaging analysis techniques, which are important to biomedical imaging analysis of the cardiovascular system. This is a comprehensive, multi-contributed reference work that details the latest developments in spatial, temporal and functional cardiac imaging. Takes an integrated approach to cardiovascular and coronary imaging, covering machine learning, deep learning and reinforcement learning approaches Covers state-of-the-art approaches for automated non-invasive systems for early cardiovascular disease diagnosis Provides a perspective on future cardiovascular imaging and highlights areas that still need improvement

Motion Correction and Volumetric Acquisition Techniques for Coronary Magnetic Resonance Angiography Christian Stehning 2005
Basic Principles of Cardiovascular MRI Mushabbar A. Syed 2015-10-29 This book is a comprehensive and authoritative text on the expanding scope of CMR, dedicated to covering basic principles in detail focusing on the needs of cardiovascular imagers. The target audience for this book includes CMR specialists, trainees in CMR and cardiovascular medicine, cardiovascular physicists or clinical cardiovascular imagers. This book includes figures and CMR examples in the form of high-resolution still images and is divided in two sections: basic MRI physics, i.e. the nuts and bolts of MR imaging; and imaging techniques (pulse sequences) used in cardiovascular MR imaging. Each imaging technique is discussed in a separate chapter that includes the physics and clinical applications (with cardiovascular examples) of a particular technique. Evolving techniques or research based techniques are discussed as well. This section covers both cardiac and vascular imaging. Cardiovascular magnetic resonance (CMR) imaging is now considered a clinically important imaging modality for patients with a wide variety of cardiovascular diseases. Recent developments in scanner hardware, imaging sequences, and analysis software have led to 3-dimensional, high-resolution imaging of the cardiovascular system. These developments have also influenced a wide variety of cardiovascular imaging applications and it is now routinely used in clinical practice in CMR laboratories around the world. The non-invasiveness and lack of ionizing radiation exposure make CMR uniquely important for patients whose clinical condition requires serial imaging follow-up. This is particularly true for patients with congenital heart disease (CHD) with or without surgical corrections who require lifelong clinical and imaging follow-up.

Cardiovascular Magnetic Resonance Warren J. Manning 2010 Cardiovascular Magnetic Resonance provides you with up-to-date clinical applications of cardiovascular MRI for the broad spectrum of cardiovascular diseases, including ischemic, myopathic, valvular, and congenital heart diseases, as well as great vessel and peripheral vascular disease. Editors Warren J. Manning and Dudley J. Pennell and their team of international contributors cover everything from basic MR physics to sequence design, flow quantification and spectroscopy to structural anatomy and pathology. Learn the appropriate role for CMR in a variety of clinical settings with reference to other modalities, practical limitations, and costs. With the latest information on contrast agents, MR angiography, MR spectroscopy, imaging protocols, and more, this book is essential for both the beginner and expert CMR practitioner. Covers both the technical and clinical aspects of CMR to serve as a comprehensive reference. Demonstrates the full spectrum of the application of cardiac MR

Coronary Angiography Baskot Branislav 2011-09-15 In the intervening 10 years tremendous advances in the field of cardiac computed tomography have occurred. We now can legitimately claim that computed tomography angiography (CTA) of the coronary arteries is available. In the evaluation of patients with suspected coronary artery disease (CAD), many guidelines today consider CTA an alternative to stress testing. The use of CTA in primary prevention patients is more controversial in considering diagnostic test interpretation in populations with a low prevalence to disease. However the nuclear technique most frequently used by cardiologists is myocardial perfusion imaging (MPI). The combination of a nuclear camera with CTA allows for the attainment of coronary anatomic, cardiac function and MPI from one piece of equipment. PET/SPECT cameras can now assess perfusion, function, and metabolism. Assessing cardiac viability is now fairly routine with these enhancements to cardiac imaging. This issue is full of important information that every cardiologist needs to now.

Coronary Angiography Vasken Dilsizian 2011-09-14 This careful revision keeps pace with developments in the field, with new chapters on PET Metabolism, CT and MRI in the Emergency Department, Image-Guided Electrophysiology Mapping and Ablation, and Identification of Vulnerable Atherosclerotic Plaque by Radionuclide and CT techniques, plus the introduction of new contributors Udo Hoffman and Stephan Achenbach. Praised in its previous edition as a concise source of essential information, this new edition presents the most recent information in an accessible format and serves as an excellent reference source for all cardiologists, radiologists and nuclear medicine physicians.
from ischemic heart disease to valvular, myopathic, pericardial, aortic, and congenital heart disease. Includes coverage of normal anatomy, orientation, and function to provide you with baseline values. Discusses advanced techniques, such as interventional MR, to include essential information relevant to the specialist. Features appendices with acronyms and CMR terminology used by equipment vendors that serve as an introduction to the field. Uses consistent terminology and abbreviations throughout the text for clarity and easy reference. Covers both the technical and clinical aspects of CMR to serve as a comprehensive reference. Demonstrates the full spectrum of the application of cardiac MR from ischemic heart disease to valvular, myopathic, pericardial, aortic, and congenital heart disease. Includes coverage of normal anatomy, orientation, and function to provide you with baseline values. Discusses advanced techniques, such as interventional MR, to include essential information relevant to the specialist. Features appendices with acronyms and CMR terminology used by equipment vendors that serve as an introduction to the field. Uses consistent terminology and abbreviations throughout the text for clarity and easy reference.

Protocols and Methodologies in Basic Science and Clinical Cardiac MRI
Christakis Constantinides 2017-10-24 This book focuses on the practical issues of the implementation of state-of-the-art acquisition methodologies and protocols for both basic science and clinical practice. It is a practical guidebook for both beginners and advanced users for easy and practical implementation of acquisition protocols. It is relevant for a wide audience that ranges from students, residents, fellows, basic scientists, physicists, engineers, and medical practitioners. The novelty of this book relates to its intended practical use and focus on state-of-the-art cardiac MRI techniques that span both the clinical and basic science fields. In comparison and contrast to other pre-existing books, this book will distinguish from others for its practical usefulness and conciseness. Correspondingly, the book will be used as a handbook (quick reference) for new starters or people who would like to establish state-of-the-art cardiac MRI techniques in their institutions. Given the historical evolution of technique development in MRI, the clinical and basic science topics will be described separately. However, in instances where basic science development complemented (or is envisaged to complement) clinical development (e.g., Diffusion MRI and tractography), every effort will be made to allow a comprehensive review and associations of the clinical/basic science subfields.

Coronary Artery Magnetic Resonance Angiography Using Steady-state Free Precession Imaging
Vibhas S. Deshpande 2003

Nuclear Cardiology and Cardiac Magnetic Resonance
Ernst E. van der Wall 2012-12-06
Cardiovascular nuclear medicine emerged 15 years ago as a new noninvasive technique for the detection of human cardiac disease. It arised from the fields of nuclear medicine and cardiology and the cooperation of both specialties has been very productive. At present, nuclear cardiology techniques belong to the routine armamentarium of the clinical cardiologist. Results obtained by perfusion markers, metabolic tracers, and radionuclide angiography have shown to have important impact on patient management. Although exercise electrocardiography and echocardiography yield the large bulk of necessary data in the cardiac patient, nuclear cardiology provides important data that go far beyond the results obtained by the standard procedures. Magnetic resonance imaging is a relative newcomer in cardio logy and has still to prove its value in clinical cardiology. Yet, initial results have been encouraging both in congenital heart disease and in coronary artery disease. This book is based on 16 review publications that have been written throughout the period of 1985 till present time. Most chapters have been published in the period 1989 until 1991; the preceding review papers have been updated as much as possible. Furthermore, Chapter 15 entitled "What's new in cardiac imaging" has been espe cially written for this book. The Chapters 9, 11 and 13 have been recently written and have not been published yet.

Cardiovascular Magnetic Resonance
E. Nagel 2012-12-06
Magnetic resonance imaging of the heart allows a quick and exact evaluation of global and regional pump function, regional myocardial wall motion, myocardial perfusion...
and coronary blood flow. Some of these parameters must also be analyzed under stress conditions to identify myocardial ischemia. By combining these functional parameters with high-resolution anatomical images, which are even sufficient to depict the coronary arteries, magnetic resonance imaging has become one of the most important noninvasive procedures to study the condition of the heart and is being increasingly used in the clinical setting. Therefore, it is important not only to optimize and evaluate the technique in specialized centers, but also for a broad variety of users to become familiar with the wide range of applications for this method. In this book, which is aimed at cardiologists, radiologists, and technical assistants, the physical fundamentals and scanning techniques are clearly described. In addition, practical guidelines for the anatomical planning of the examination and for patient care are offered. The accompanying CD-ROM contains additional figures and numerous videos. Clinical and Experimental Cardiovascular Magnetic Resonance Angiography Agnes Enikő Holland 2000 Cardiovascular Magnetic Resonance Imaging Raymond Y. Kwong 2019-01-31 The significantly updated second edition of this important work provides an up-to-date and comprehensive overview of cardiovascular magnetic resonance imaging (CMR), a rapidly evolving tool for diagnosis and intervention of cardiovascular disease. New and updated chapters focus on recent applications of CMR such as electrophysiological ablative treatment of arrhythmias, targeted molecular MRI, and T1 mapping methods. The book presents a state-of-the-art compilation of expert contributions to the field, each examining normal and pathologic anatomy of the cardiovascular system as assessed by magnetic resonance imaging. Functional techniques such as myocardial perfusion imaging and assessment of flow velocity are emphasized, along with the exciting areas of atherosclerosis plaque imaging and targeted MRI. This cutting-edge volume represents a multi-disciplinary approach to the field, with contributions from experts in cardiology, radiology, physics, engineering, physiology and biochemistry, and offers new directions in noninvasive imaging. The Second Edition of Cardiovascular Magnetic Resonance Imaging is an essential resource for cardiologists and radiologists striving to lead the way into the future of this important field. Magnetic Resonance Angiography I.P. Arlart 2012-12-06 In this completely revised second edition, internationally acknowledged experts discuss the principles and technical aspects of MR angiography, its diverse clinical applications, and its advantages and limitations. A large number of typical MR angiograms are presented, suitable protocols are described, and comparison is made with other vascular imaging techniques. Chapters focus on image display techniques, blood flow quantification, hardware configurations, and the limitations and artifacts of MR angiography. Suitable examination protocols for different vascular regions and lesions are described to facilitate correct application of the technique. Systematic comparison is made with other vascular imaging techniques. Coronary Magnetic Resonance Imaging After Routine Implantation of Bioresorbable Vascular Scaffolds Allows Non-invasive Evaluation of Vascular Patency Constantin von Zur Mühlen 2018 Design and Reconstruction of Conical Trajectories for Motion-robust Coronary Magnetic Resonance Angiography Mario Octavio Malavé 2019 Coronary artery disease is the leading cause of death in the United States with more than half a million Americans suffering their first heart attack every year. X-ray catheterization is the standard method for disease diagnosis but is invasive and uses ionizing radiation. Magnetic resonance imaging (MRI) provides a noninvasive method for assessing the presence of stenoses in coronary arteries without the use of ionizing radiation. One of the major challenges with free-breathing coronary magnetic resonance angiography (CMRA) is respiratory motion. This dissertation introduces various technical innovations for advancing CMRA toward clinical relevance. These methods include a 3D phyllotaxis-cones trajectory design used for improved motion-robust cardiac imaging when using a balanced steady state free precession (bSSFP) sequence, an improved 3D image-based navigator (iNAV) design and reconstruction that reduces coherent
aliasing artifacts caused by undersampling, and a novel deep learning (DL) approach for the accelerated reconstruction of 3D undersampled non-Cartesian datasets. For CMRA applications, bSSFP sequences are typically used due to the produced T2/T1-weighted signal. This leads to high contrast between blood and myocardium. For free-breathing CMRA, respiratory motion artifacts can be reduced by using view-ordering techniques where k-space coverage is well distributed for every heartbeat. Unfortunately for bSSFP sequences, eddy currents and associated artifacts are introduced when the k-space position is drastically varied between excitations. The proposed trajectory solves this problem by using a 3D phyllotaxis-cones design to sample a more distributed region of k-space during each heartbeat to improve motion robustness without introducing noticeable eddy current artifacts. The results from point spread function analysis, moving phantom studies, and in vivo scans demonstrated improved robustness to motion and superior coronary vessel sharpness when using the proposed phyllotaxis-cones design compared to the standard sequential-cones acquisition. Further techniques for respiratory motion artifact reduction involve monitoring and retrospectively correcting for motion. This can be achieved by using iNAVs, which are collected before and/or after segmented high-resolution data over multiple heartbeats. To obtain localized motion information, 3D iNAVs are acquired which allow for more sophisticated motion-correction techniques such as autofocusing. When collecting 3D iNAVs, a short temporal resolution and limited acquisition window create design challenges, and thus require using an undersampled variable-density (VD) approach. Furthermore, iterative techniques are then used to remove the aliasing artifacts that arise due to undersampling. The proposed technique in this dissertation uses an improved design and reconstruction for undersampled 3D (cones) iNAVs that reduces coherent aliasing artifacts. The 3D iNAV design was compared to a prior method by using point spread function analysis, simulated phantoms, and in vivo scans. The results showed decreased coherent aliasing artifacts for the proposed technique. Additionally in the in vivo motion-corrected images, coronary image quality was superior (or similar) after motion correction using the improved 3D iNAVs. DL has the potential for accelerating iterative reconstruction techniques used for undersampled reconstruction. Unfortunately, DL architectures are highly dependent on large amounts of training data which are not always readily available. If DL architectures incorporate physics specific to the application, the model has the potential for improved results with a finite amount of training data. The proposed DL approach uses an unrolled model architecture to accommodate non-Cartesian 3D k-space datasets by incorporating a non-uniform Fast Fourier Transform (NUFFT) operator with a convolutional neural network (CNN) to improve the results beyond the typical "black box" CNN approach. This technique decreases the sparse reconstruction time by one-twentieth on CPU and one-third on GPU when using previous state-of-the-art iterative reconstruction methods. Also, when applying motion correction using model-based 3D iNAVs compared to previous iterative reconstructed 3D iNAVs, coronary image quality remained the same. This confirmed that the unrolled model can properly generalize the iterative reconstruction algorithm while substantially reducing the reconstruction time. The new motion-robust k-space trajectory design, improved undersampled 3D iNAV design and reconstruction, and accelerated DL reconstruction techniques address several of the challenges with CMRA by reducing respiratory motion artifacts, reducing coherent aliasing artifacts, and accelerating reconstruction time. These advances can help put CMRA one step closer toward clinical relevance.

Magnetic Resonance Angiography

E. James Potchen 1993 Combines coverage of the technical foundation of magnetic resonance angiography (MRA) with practical information on its clinical utilization. The book discusses the uses for MRA, including both intracranial applications and vascular applications in the neck, abdomen, thorax and peripherals.

Magnetic Resonance Angiography

James C. Carr 2011-12-10 Magnetic Resonance Angiography: Principles and Applications is a comprehensive text covering magnetic resonance angiography (MRA) in current clinical use. The first part of the book focuses on techniques, with chapters on contrast-enhanced
MRA, time of flight, phase contrast, time-resolved angiography, and coronary MRA, as well as several chapters devoted to new non-contrast MRA techniques. Additionally, chapters describe in detail specific topics such as high-field MRA, susceptibility-weighted imaging, acceleration strategies such as parallel imaging, vessel wall imaging, targeted contrast agents, and low dose contrast-enhanced MRA. The second part of the book covers clinical applications of MRA, with each chapter describing the MRA techniques and protocols for a particular disease and vascular territory, as well as the pathology and imaging findings relevant to the disease state being discussed. Magnetic Resonance Angiography: Principles and Applications is designed to bring together into a single textbook all of the MRA techniques in clinical practice today and will be a valuable resource for practicing radiologists and other physicians involved in the diagnosis and treatment of vascular diseases, as well as biomedical physicists, MRI technologists, residents, and fellows. Editors James C. Carr, MD, is the Director of Cardiovascular Imaging and Associate Professor of Radiology and Medicine at Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA. Timothy J. Carroll, PhD, is the Director of MRI Research and Associate Professor in the Departments of Biomedical Engineering and Radiology at Northwestern University, Evanston, Illinois, USA.

MR Angiography with Vasovist Mathias Goyen 2006

Novel Techniques for Imaging the Heart Marcelo F. Di Carli 2009-01-26 This book brings the recent dramatic changes in the field of cardiovascular imaging into the clinical setting to enable the clinician to best use the technology at hand. Novel Techniques for Imaging the Heart opens with three chapters reviewing the general considerations and fundamentals of imaging, followed by a series of chapters that address clinical applications of CT and CMR, including critical review of imaging approaches for diagnosis and prognosis of CAD evaluating the patient with new onset heart failure evaluating the patient before non-cardiac surgery evaluating the patient before interventionalelectrophysiology novel assessment of vascular flow and valvular disease relative merits of CTA and MRA for coronary artery imaging The final section deals with advanced applications of CT and MR imaging, considers technical advances and future prospects of high-field MRI, and concludes with a chapter on image-guided cardiac interventions. The book includes a companion CD-ROM with a searchable database of figures from the book and 40 video clips fully referenced in the text.

Practical Textbook of Cardiac CT and MRI Tae-Hwan Lim 2015-02-09 This up-to-date textbook comprehensively reviews all aspects of cardiac CT and MRI and demonstrates the value of these techniques in clinical practice. A wide range of applications are considered, including imaging of atherosclerotic and non-atherosclerotic coronary artery disease, coronary revascularization, ischemic heart disease, non-ischemic cardiomyopathy, valvular heart disease, cardiac tumors, and pericardial disease. The numerous high-quality images illustrate how to interpret cardiac CT and MRI correctly for the purposes of diagnosis, treatment planning, and follow-up. Helpful summarizing sections in every chapter will facilitate rapid retrieval of information. This book will be of great value to radiologists and cardiologists seeking a reliable
guide to the optimal use of cardiac CT and MRI in real clinical situations. An additional feature is the provision of QR codes allowing internet access to references, further figures, and motion pictures. The reader will be able to enjoy this book using a smartphone or tablet PC.

Cardiac MR is explored in this important issue in MRI Clinics of North America. Articles will include: MR physics in practice; Ventricular mechanics: Techniques and applications; MR safety issues particular to women; Novel MR applications for evaluation of pericardial diseases; 4D flow applications for aortic diseases; T1 mapping: technique and applications; ARVD: An updated imaging approach; Imaging the metabolic syndrome; Coronary MRA: how to optimize image quality; Prognostic role of MRI in nonischemic myocardial disease; MRI for valvular imaging; MRI for adult congenital heart disease assessment; Cardiac MRI applications for cancer patients; Applications of PET-MRI for cardiovascular disease; Rings and slings, and more.

Cardiac Gating Methods for Coronary Magnetic Resonance Angiography Garry Liu 2014

Comparison of SPIR and SPAIR Techniques for Coronary Magnetic Resonance Angiography Supapon Nakyen 2011

Cardiovascular Magnetic Resonance Made Easy Anitha Varghese 2008

This title provides an easily digestible and portable synopsis of the technique which will suit the needs of cardiologists and cardiothoracic surgeons wishing to acquaint themselves with what CMR can do, and what it cannot. Beginning with an outline of some of the basic principles of MRI, the following chapters concentrate on the cardiac side of CMR with a later section on its more established vascular uses.